Scenario analysis for BMJ Open paper#
Multiway sensitivity analyses to test the impact of varying parameters on the key performance measures (bed utilisation, lost slots, and total surgical throughput).
Used to generate underlying data and plot used in the paper
POST-COVID ORTHOPAEDIC ELECTIVE RESOURCE PLANNING USING SIMULATION
MODELLING
1. Import packages#
import simpy
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import math
import random
import itertools
import plotly.express as px
import model2 as md
import kaleido
import plotly.io as pio
2. Scenario design#
for beds 30 : 80 (5): for schedule (baseline : baseline+weekend):
baseline los ; baseline prop delay
baseline los ; 0.25* prop delay
0.25* los ; baseline prop delay
0.25* los ; 0.25* prop delay
3. Create schedule with weekend activity for scenarios#
Saved to csv - this only needs to be done once.
# DEFAULT_PRIMARY_DICT = {1: 'p_hip', 2: 'p_knee', 3: 'uni_knee'}
# DEFAULT_REVISION_DICT = {1: 'r_hip', 2: 'r_knee'}
# DEFAULT_PRIMARY_PROB = [0.51, 0.38, 0.11]
# DEFAULT_REVISION_PROB = [0.55, 0.45]
# SET_WEEKDAY = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
# 'Friday', 'Saturday', 'Sunday']
# SET_SESSIONS_PER_WEEKDAY = {'Monday': 3, 'Tuesday': 3, 'Wednesday': 3, 'Thursday': 3,
# 'Friday': 3, 'Saturday': 3, 'Sunday': 3}
# SET_SESSIONS_PER_WEEKDAY_LIST = list(SET_SESSIONS_PER_WEEKDAY.values())
# SET_ALLOCATION = {'Monday': ['2P_or_1R', '2P_or_1R', '1P'],
# 'Tuesday': ['2P_or_1R', '2P_or_1R', '1P'],
# 'Wednesday': ['2P_or_1R', '2P_or_1R', '1P'],
# 'Thursday': ['2P_or_1R', '2P_or_1R', '1P'],
# 'Friday': ['2P_or_1R', '2P_or_1R', '1P'],
# 'Saturday': ['2P_or_1R', '2P_or_1R', '1P'],
# 'Sunday': ['2P_or_1R', '2P_or_1R', '1P']}
# SET_THEATRES_PER_WEEKDAY = {'Monday': 4, 'Tuesday': 4, 'Wednesday': 4, 'Thursday': 4,
# 'Friday': 4, 'Saturday': 4, 'Sunday': 4}
# DEFAULT_RESULTS_COLLECTION_PERIOD = 70
# DEFAULT_WARM_UP_PERIOD = 35
# DEFAULT_NUMBER_OF_RUNS = 50
# class Schedule:
# """
# Creates theatre schedule according to rules
# """
# def __init__(self, weekday=SET_WEEKDAY,
# allocation=SET_ALLOCATION,
# sessions_per_weekday=SET_SESSIONS_PER_WEEKDAY,
# sessions_per_weekday_list=SET_SESSIONS_PER_WEEKDAY_LIST,
# theatres_per_weekday=SET_THEATRES_PER_WEEKDAY):
# """
# parameters used to create schedule defined in 'scenarios class'
# """
# self.weekday=weekday
# self.allocation=allocation
# self.sessions_per_weekday=sessions_per_weekday
# self.sessions_per_weekday_list=sessions_per_weekday_list
# self.theatres_per_weekday=theatres_per_weekday
# def create_schedule(self,weekday, sessions_per_weekday_list, allocation, theatres_per_weekday):
# """
# Arguments needed:
# *weekday: a list of weekdays
# *sessions_per_weekday: a list of integers representing the number of sessions per weekday
# *allocation: a dictionary where the keys are the weekdays and the values are lists of
# allocations for each session
# *theatres_per_weekday: a dictionary where the keys are the weekdays and the values are
# integers representing the number of theatres per weekday
# Returns a dictionary where the keys are the weekdays and the values are lists
# of lists of allocations for each theatre for each session.
# """
# schedule = {}
# for day, num_sessions in zip(weekday, sessions_per_weekday_list):
# schedule[day] = []
# for theatre in range(theatres_per_weekday[day]):
# schedule[day].append([])
# for session in range(num_sessions):
# if allocation[day][session] == '1P':
# schedule[day][theatre].append({'primary': 1})
# elif allocation[day][session] == '1R':
# schedule[day][theatre].append({'revision': 1})
# elif allocation[day][session] == '2P':
# schedule[day][theatre].append({'primary': 2})
# elif allocation[day][session] == '2P_or_1R':
# if random.random() > 0.5:
# schedule[day][theatre].append({'primary': 2})
# else:
# schedule[day][theatre].append({'revision': 1})
# return schedule
# def daily_counts(self,day_data):
# """
# day_data: called in week_schedule() function, day_data is a sample weekly dictionary from create_schedule()
# Convert dict to a pandas DataFrame with 'primary' and 'revision' as columns
# and days of the week as the index, populated with the total count of 'primary' and 'revision' in each day.
# Returns a one week schedule
# """
# #day_data = create_schedule(weekday, sessions_per_weekday, allocation, theatres_per_weekday)
# primary_slots = 0
# revision_slots = 0
# for value in day_data:
# if value:
# for sub_value in value:
# if 'primary' in sub_value:
# primary_slots += sub_value['primary']
# if 'revision' in sub_value:
# revision_slots += sub_value['revision']
# return [primary_slots, revision_slots]
# def week_schedule(self):
# """
# samples a weekly dictionary of theatres, sessions, and surgeries from create_schedule()
# counts daily number or primary and revision surgeries needed using daily_counts()
# and converts to a dataframe
# """
# week_sched = pd.DataFrame(columns=['Primary_slots', 'Revision_slots'])
# day_data = self.create_schedule(self.weekday, self.sessions_per_weekday_list,
# self.allocation, self.theatres_per_weekday)
# for key, value in day_data.items():
# week_sched.loc[key] = self.daily_counts(value)
# week_sched = week_sched.reset_index()
# week_sched.rename(columns = {'index':'Day'}, inplace = True)
# return week_sched
# def theatre_capacity(self):
# length_sched = int(round(2*(DEFAULT_WARM_UP_PERIOD+DEFAULT_RESULTS_COLLECTION_PERIOD)/7, 0))
# DEFAULT_SCHEDULE_AVAIL = pd.DataFrame()
# for week in range(length_sched):
# single_random_week = self.week_schedule()
# DEFAULT_SCHEDULE_AVAIL = pd.concat([DEFAULT_SCHEDULE_AVAIL, single_random_week],axis=0)
# return DEFAULT_SCHEDULE_AVAIL.reset_index()
# class Save:
# schedule = Schedule()
# def __init__(self, schedule):
# self.schedule = schedule
# schedule_avail_weekend = schedule.theatre_capacity()
# print(schedule_avail_weekend.head(7))
# schedule_avail_weekend.to_csv('Test_data/schedule_seven_days.csv')
new_schedule = pd.read_csv("Test_data/schedule_seven_days.csv")
4. Dictionary of scenario definitions#
Pre-defined scenarios as a dictionary and dataframe
def get_scenario_dict():
'''
Creates a dictionary object of scenario attributes from a dataframe
of defined scenarios
Returns:
--------
dict:
Contains the scenario attributes for the model
df:
Contains a table of scenarios
'''
#values for scenario df
scenario = [i for i in range(1, 37)]
beds_seq = [i for i in range(30, 75, 5)]*4
primary_hip_mean_los = [md.DEFAULT_PRIMARY_HIP_MEAN_LOS, md.DEFAULT_PRIMARY_HIP_MEAN_LOS*0.25]*18
primary_knee_mean_los = [md.DEFAULT_PRIMARY_KNEE_MEAN_LOS, md.DEFAULT_PRIMARY_KNEE_MEAN_LOS*0.25]*18
revision_hip_mean_los = [md.DEFAULT_REVISION_HIP_MEAN_LOS, md.DEFAULT_REVISION_HIP_MEAN_LOS*0.25]*18
revision_knee_mean_los = [md.DEFAULT_REVISION_KNEE_MEAN_LOS, md.DEFAULT_REVISION_KNEE_MEAN_LOS*0.25]*18
unicompart_knee_mean_los = [md.DEFAULT_UNICOMPART_KNEE_MEAN_LOS, md.DEFAULT_UNICOMPART_KNEE_MEAN_LOS*0.25]*18
delay_post_los_mean = [md.DEFAULT_DELAY_POST_LOS_MEAN]*36
prob_ward_delay = (([md.DEFAULT_PROB_WARD_DELAY, md.DEFAULT_PROB_WARD_DELAY*0.25]*9) +
([md.DEFAULT_PROB_WARD_DELAY*0.25, md.DEFAULT_PROB_WARD_DELAY]*9))
#create df of scenarios
values_df = pd.DataFrame({'scenario':scenario,
'n_beds': beds_seq,
'primary_hip_mean_los': primary_hip_mean_los,
'primary_knee_mean_los': primary_knee_mean_los,
'revision_hip_mean_los': revision_hip_mean_los,
'revision_knee_mean_los': revision_knee_mean_los,
'unicompart_knee_mean_los' : unicompart_knee_mean_los,
'delay_post_los_mean': delay_post_los_mean,
'prob_ward_delay': prob_ward_delay})
#create dict of scenarios
scenario_dict = {}
for i, row in values_df.iterrows():
key = row['scenario']
value = [{'n_beds': row['n_beds']},
{'primary_hip_mean_los': row['primary_hip_mean_los']},
{'primary_knee_mean_los': row['primary_knee_mean_los']},
{'revision_hip_mean_los': row['revision_hip_mean_los']},
{'revision_knee_mean_los': row['revision_knee_mean_los']},
{'unicompart_knee_mean_los' : row['unicompart_knee_mean_los']},
{'delay_post_los_mean': row['delay_post_los_mean']},
{'prob_ward_delay': row['prob_ward_delay']}]
scenario_dict[key] = value
return(values_df, scenario_dict)
5. Create scenarios dictionary#
Creates a set of scenarios
objects using dictionary of scenario definitions and both schedules
Uses multiple_reps
function in main model class to run model and generate results
def get_scenarios_2k(dict_s, new_schedule):
"""
Create dictionary of scenario objects using attribute dictionary
dict_s = scenario_dict returned from get_scenario_dict() function
A set of baseline schedule
A set of new_schedule
Returns:
--------
dict
Contains the scenarios for the model
"""
scenarios = {}
schedule = md.Schedule()
for key, value in dict_s.items():
attributes = {}
for item in value:
for sub_key, sub_value in item.items():
attributes[sub_key] = sub_value
#for each scenario, create a Scenario object with baseline schedule
scenarios[key] = md.Scenario(schedule, schedule_avail=None, **attributes)
# for each scenario, create a Scenario object with new schedule
scenarios[f'{key}_new_schedule'] = md.Scenario(schedule, schedule_avail = new_schedule, **attributes)
return scenarios
def run_scenario_analysis_2k(scenarios, rc_period, n_reps):
'''
Run each of the scenarios for a specified results
collection period and replications.
Returns:
a) summary results table
b) Results per day
c) Patient-level results
Params:
------
scenarios: dict
dictionary of Scenario objects
rc_period: float
model run length
n_rep: int
Number of replications
'''
print('Scenario Analysis')
print(f'No. Scenario: {len(scenarios)}')
print(f'Replications: {n_reps}')
scenario_results_summ = {}
scenario_results_day = {}
scenario_results_ppat = {}
scenario_results_rpat = {}
for sc_name, scenario in scenarios.items():
print(f'Running {sc_name}', end=' => ')
replications = md.multiple_reps(scenario,
results_collection=md.DEFAULT_RESULTS_COLLECTION_PERIOD+md.DEFAULT_WARM_UP_PERIOD,
n_reps=md.DEFAULT_NUMBER_OF_RUNS)
replications_summ = replications[0]
replications_day = replications[1]
replications_ppat = replications[2]
replications_rpat = replications[3]
print('done.\n')
#save the results
scenario_results_summ[sc_name] = replications_summ
scenario_results_day[sc_name] = replications_day
scenario_results_ppat[sc_name] = replications_ppat
scenario_results_rpat[sc_name] = replications_rpat
print('Scenario analysis complete.')
return (scenario_results_summ, scenario_results_day,scenario_results_ppat,scenario_results_rpat)
#get the scenario df and dict
sc = get_scenario_dict()
scenario_df, scenario_dict = sc[0], sc[1]
#convert to scenarios
#new_sched = pd.read_csv('schedule_weekends.csv')
scenarios = get_scenarios_2k(scenario_dict, new_schedule)
#run the scenario analysis
scenario_results_2k = run_scenario_analysis_2k(scenarios,
md.DEFAULT_RESULTS_COLLECTION_PERIOD+md.DEFAULT_WARM_UP_PERIOD,
n_reps= md.DEFAULT_NUMBER_OF_RUNS)#number_of_runs
scenario_results_patients_2k = {key: pd.concat([scenario_results_2k[2][key], scenario_results_2k[3][key]],
ignore_index=True) for key in scenario_results_2k[2].keys()}
Scenario Analysis
No. Scenario: 72
Replications: 50
Running 1.0 => done.
Running 1.0_new_schedule => done.
Running 2.0 => done.
Running 2.0_new_schedule => done.
Running 3.0 => done.
Running 3.0_new_schedule => done.
Running 4.0 => done.
Running 4.0_new_schedule => done.
Running 5.0 => done.
Running 5.0_new_schedule => done.
Running 6.0 => done.
Running 6.0_new_schedule => done.
Running 7.0 => done.
Running 7.0_new_schedule => done.
Running 8.0 => done.
Running 8.0_new_schedule => done.
Running 9.0 => done.
Running 9.0_new_schedule => done.
Running 10.0 => done.
Running 10.0_new_schedule => done.
Running 11.0 => done.
Running 11.0_new_schedule => done.
Running 12.0 => done.
Running 12.0_new_schedule => done.
Running 13.0 => done.
Running 13.0_new_schedule => done.
Running 14.0 => done.
Running 14.0_new_schedule => done.
Running 15.0 => done.
Running 15.0_new_schedule => done.
Running 16.0 => done.
Running 16.0_new_schedule => done.
Running 17.0 => done.
Running 17.0_new_schedule => done.
Running 18.0 => done.
Running 18.0_new_schedule => done.
Running 19.0 => done.
Running 19.0_new_schedule => done.
Running 20.0 => done.
Running 20.0_new_schedule => done.
Running 21.0 => done.
Running 21.0_new_schedule => done.
Running 22.0 => done.
Running 22.0_new_schedule => done.
Running 23.0 => done.
Running 23.0_new_schedule => done.
Running 24.0 => done.
Running 24.0_new_schedule => done.
Running 25.0 => done.
Running 25.0_new_schedule => done.
Running 26.0 => done.
Running 26.0_new_schedule => done.
Running 27.0 => done.
Running 27.0_new_schedule => done.
Running 28.0 => done.
Running 28.0_new_schedule => done.
Running 29.0 => done.
Running 29.0_new_schedule => done.
Running 30.0 => done.
Running 30.0_new_schedule => done.
Running 31.0 => done.
Running 31.0_new_schedule => done.
Running 32.0 => done.
Running 32.0_new_schedule => done.
Running 33.0 => done.
Running 33.0_new_schedule => done.
Running 34.0 => done.
Running 34.0_new_schedule => done.
Running 35.0 => done.
Running 35.0_new_schedule => done.
Running 36.0 => done.
Running 36.0_new_schedule => done.
Scenario analysis complete.
6. Save scenario table#
Scenario definitions dataframe from function get_scenario_dict
Save scenario table (72 scenarios = range of capacity *9, los *2, delays *2, schedule *2)
# save table of scenarios
scenario_df = scenario_df.round(2)
scenario_df.to_csv('output/scenario_df.csv')
7. Scenario output description#
Each capacity on the x-axis With schedule and schedule_new in separate columns
Each los and delay scenario (4) for each capacity (and sched) with:
mean utilisation
mean total thruput
mean total lost slots
7.1 Throughput#
# scenario_results_patients_2k: patient-level results
def mean_weekly_thruput_per_procedure(scenario_results_patients_2k):
'''
Takes patient level data as inputs
Remove 'lost slots' so only patients with a stay are included
Remove warm-up period
Summarises by surgical type
'''
columns = []
patient_summary = pd.DataFrame()
for sc_name, replications in scenario_results_patients_2k.items():
#for total throughput: select only those who are allocated a bed
replications = replications[replications['lost slots'] == False]
replications = replications[replications['Day'] > md.DEFAULT_WARM_UP_PERIOD]
replications = replications[['Day','weekday','surgery type', 'depart']]
patient_summary = pd.concat([patient_summary, replications.groupby(['Day','weekday'])\
['weekday'].count()],axis=1)
columns.append(sc_name)
patient_summary.rename(columns = {'weekday':'Counts'}, inplace = True)
patient_summary = patient_summary.assign(Counts = lambda x: (x['Counts'] / md.DEFAULT_NUMBER_OF_RUNS)).fillna(0)
patient_summary.columns = columns
patient_summary = patient_summary.reset_index()
patient_summary.rename(columns = {'level_0':'Day', 'level_1':'weekday'}, inplace = True)
patient_summary = pd.DataFrame(patient_summary.groupby(['weekday'])[columns].mean())
return patient_summary.reset_index()
# run function and save weekly surgical throughput per procedure to csv
weekly_thru_procedure = mean_weekly_thruput_per_procedure(scenario_results_patients_2k)
# put in long format for plotting
def long_data(weekly_thru_procedure, measure):
'''
A function to take outputs of weekly and summarise per day into long format
weekly_thru_procedure = weekly data
measure = create measure name for plotting outputs
'''
# create df of means and remove weekday
means = weekly_thru_procedure.mean(axis = 0)
means_thru = pd.DataFrame({'Means per day': means}).iloc[1:].reset_index()
#separate schedule categories and number of beds into separate columns
means_thru['index'] = means_thru['index'].astype(str)
means_thru['Schedule '] = np.where(means_thru['index'].str.contains('_new_schedule'),
' Baseline + weekends', ' Baseline')
means_thru['Beds'] = [i for i in range(30, 75, 5) for _ in range(2)] * 4
# extract scenario number
means_thru['index_int'] = means_thru['index'].str.extract('(\d+)').astype(float)
def get_new_value(idx):
'''
function to allocate scenario for los and prop delayed
'''
num = int(float(idx))
if num % 2 == 0:
los = 'low'
else:
los = 'high'
if num <= 18:
prop = 'prop_high' if num % 2 == 1 else 'prop_low'
else:
prop = 'prop_high' if num % 2 == 0 else 'prop_low'
return f"{los}_los, {prop}"
# Apply the function to the 'index' column to create a new column
means_thru['scenarios'] = means_thru['index_int'].apply(get_new_value)
# add a 'measure column' for plotting
means_thru['Measure '] = [measure]*72
return means_thru
# put throughput data into long format
long_thru_data = long_data(weekly_thru_procedure, ' Throughput')
7.2 Utilisation#
def daily_utilisation(scenario_results):
"""
Weekly audit results for utilisation
"""
columns = []
weekly_summary = pd.DataFrame()
for sc_name, replications in scenario_results.items():
weekly_summary = pd.concat([weekly_summary, replications.groupby(['weekday']).apply(lambda x:x)],
axis=1)
columns.append(sc_name)
values = weekly_summary['bed_utilisation']
values.columns = columns
return values.reset_index()
# run function and save to csv
weekly_util = daily_utilisation(scenario_results_2k[1])
# put utilisation data into long format
long_util_data = long_data(weekly_util, ' Utilisation')
7.3 Lost slots#
def patient_scenarios(scenario_results):
"""
Takes patient level results for each performance measure by scenario
Selects lost slots, summarise across runs,
"""
columns = []
patient_summary = pd.DataFrame()
for sc_name, replications in scenario_results.items():
replications = replications[replications['Day'] > md.DEFAULT_WARM_UP_PERIOD]
patient_summary = pd.concat([patient_summary, replications.groupby(['Day', 'weekday'])\
['lost slots'].sum().astype(int)],axis=1)
columns.append(sc_name)
patient_summary = patient_summary.apply(lambda x: x / md.DEFAULT_NUMBER_OF_RUNS)
patient_summary.columns = columns
patient_summary = patient_summary.reset_index()
patient_summary.rename(columns = {'level_0':'Day', 'level_1':'weekday'}, inplace = True)
return(patient_summary)
patient_summary = patient_scenarios(scenario_results_patients_2k)
def lost_slots(patient_summary):
"""
Takes output of previous function
Deals with 0-day arrivals
plot lost slots per scenario per weekday
"""
patient_summ = (patient_summary.set_index('Day')
.reindex(range(patient_summary.Day.iat[0],patient_summary.Day.iat[-1]+1), fill_value=0)
.reset_index())
shortseq = np.arange(len(range(0,7)))
length = math.ceil(len(patient_summ) / 7)
# create total sequence and flatten array list into list of elements
sequence = ([np.tile((shortseq),length)])
flat_seq = list(itertools.chain(*sequence))
# truncate to correct length and save to column
sequence = flat_seq[:len(patient_summ)]
patient_summ['weekday'] = sequence
patient_summ = patient_summ.fillna(0)
patient_summ = patient_summ.groupby('weekday').mean().reset_index()
patient_summ = patient_summ.loc[:, patient_summ.columns != 'Day']
return(patient_summ)
lost_slots = lost_slots(patient_summary)
# Put lost slots data into long format
long_lostslots_data = long_data(lost_slots, ' Lost slots')
7.4 Concatenate datasets for each measure#
means_output = pd.concat([long_thru_data, long_util_data, long_lostslots_data])
means_output.to_csv('output/means_output.csv')
7.5 Plot#
fig = px.bar(means_output, x=means_output.Beds,
y=means_output['Means per day'], color=means_output.scenarios,
facet_row=means_output['Measure '], facet_col=means_output['Schedule '],
barmode='group', width=1200, height=800)
fig.layout.yaxis.matches = 'y'
fig.layout.yaxis2.matches = 'y'
fig.layout.yaxis3.matches = 'y3'
fig.layout.yaxis4.matches = 'y3'
fig.layout.yaxis5.matches = 'y5'
fig.layout.yaxis6.matches = 'y5'
fig.show()
fig.write_image('output/scenarios_paper_fig.png')